CMOS is a semiconductor device familiar to many PC and laptop users, for example, in the form of CMOS memory. This type of memory requires hardly any power to store information. It can therefore be powered by a small battery over long periods of time. How does it work?
CMOS works through an interplay between two transistors - an N-Channel MOSFET and the P-channel MOSFET. As soon as the N-channel MOSFET conducts, the P-channel MOSFET is simultaneously turned off and vice versa. Due to the low voltage in the input, the cross current remains at zero, and power is only required when switching. CMOS RAMs require their own power supply but have low consumption of their own in the process. Typical operating voltage is in the range of 0.75 to 15 volts, much lower than bipolar or MOS circuits. The CMOS transistor itself is only a few millimeters in size and is considered to be exceptionally durable. The actual lifetime depends on the type and frequency of use.
The CMOS basically consists of an n-channel and a p-channel. In the idle state, the power dissipation is only 10 nW. During switching, this depends on the type, but for the standard series, it is at about 1 mW/MHz. If a logic gate is integrated, it is about 10 µW/MHz. Since CMOS is a slow memory chip, there are operating systems that do not write to it directly. In this case, the contents and the configuration are stored as a copy in RAM.